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Abstract: Several semiempirical tight-binding models are parametrized and tested for aluminum
clusters and nanoparticles using a data set of 808 accurate Aly (N = 2—177) energies and
geometries. The effects of including overlap when solving the secular equation and of
incorporating many-body (i.e., nonpairwise) terms in the repulsion and electronic matrix elements
are studied. Pairwise orthogonal tight-binding (TB) models are found to be more accurate and
their parametrizations more transferable (for particles of different sizes) than both pairwise and
many-body nonorthogonal tight-binding models. Many-body terms do not significantly improve
the accuracy or transferability of orthogonal TB, whereas some improvement in the nonorthogonal
models is observed when many-body terms are included in the electronic Hamiltonian matrix
elements.

[. Introduction another name for extended ekel theory), and neglect of
Atomistic simulations of large systems require methods for differential overlap theories (like AME%and others which
computing electronic energies and their gradients that arehave recently been reviewgjl They offer a theoretically
orders of magnitude more efficient than most ab initio and attractive approach to modeling reactive systems because
density functional theory (DFT) methods. Simple analytic they are computationally affordable for many systems, while
potential energy functions (e.g., Lennard-Johembedded  they include an orbital-based Hamiltonian, a diagonalization
atom? etc.) are efficient, but they are not always accurate step, and the Pauli principle, three features that give rise to
and may not be valid for uses other than those for which directional bonding and valence saturation. Some such
they are parametrized. For example, we showed previbtisly methods, for example, Hoffmann’s extendetckizl method,
that analytic functions fit to either bulk data or diatomic data include orbital overlap both in parametrizing the Hamiltonian
for pure aluminum perform poorly for particles of intermedi- and in the secular equation, while other methods, both in
ate size, including clusters and nanoparticles. Although we physics and in chemistry, include orbital overlap (or a
were able to obtaihanalytic potential energy functions that function with comparable dependence on interatomic dis-
are accurate for small clusters, nanoparticles, and bulktance) in the Hamiltonian, but not in the secular equation.
aluminum using reasonably simple functional forms and an (The original Hickel method, in which the Hamiltonian
efficient fitting strategy that includes both small clusters and matrix elements were constants, is no longer widely used.)
the bulk, the problem of extending these fits to heteronuclear Methods that neglect overlap in the secular equation are
systems remains unsolved and would likely require modified usually labeled “orthogonal”, whereas those that retain it in
functional forms, such as charge-transfer tefmayiable the secular equation are labeled “nonorthogonal”’, and we
atom types,and so forth. follow this usage here. Molecular orbital methods provide a
Semiempirical molecular orbital or crystal orbital methods natural energetic description of bond breaking and forming
include extended Htkel theory’ tight binding (which is and many-body effects.
simply a more flexible form of extended"ldkel theory or Another classification that may be made is based on
whether a method is designed to include self-consistent (i.e.,
* Correspondingauthor. Fax: (612)624-7007.E-mail: trunlar@umn.edu. iterative) steps, which may be necessary for accurately
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modeling charge transfer and polar bonds. Although the Il. Theory
motivation is to eventually use orbital methods to model Al A many-electron molecular wave function may be ap-
heteronuclear chemistry, the focus of the present work is proximated as a product of one-electron wave functipns
limited to pure aluminum clusters and nanoparticles where that satisfy

charge transfer and bond polarity may be expected to be less AN

. o Hy, = €y, Q)
important than other contributions to the total energy, and

we therefore restrict our attention in the present article to where
noniterative methods without an explicit treatment of charge
interactions.

Popular orbital-based semiempirical methods were testedT is the kinetic energy operatdvie is the Coulomb operator
recently? for small aluminum clusters, where it was found for the attraction of the electron to all of the nuclei, avd
that none of the semiempirical methods tested was accuratds the sum of the two-electron operators for the Coulomb
enough for quantitative work. The most accurate semiem- repulsion, exchange, and correlation. We treat the valence
pirical method tested in ref 12 (AM%° which involves electrons explicitly and combine the core electrons with the
iterating to self-consistency) had an average error0f3 nuclei as the total core.
eV/atom. Subsequently, several parametrizations based on T0 solve eq 1, the one-electron molecular orbitajsire
the Wolfsberg-Helmholt23 (WH) tight-binding (TB) model expanded in an atomic orbital basis ﬁéﬁ wherei labels
were obtainetf using a database of aluminum clusteg Al the individual atomic orbitals centered on atém
(N = 2-13) energies with an average error as small as 0.03 —Sco 3)
eV/atom. Here, we build on that work and explicitly consider ¥y Z i¥i
the transferability of TB parametrizations using an expanded
data set, containing systems as large as 177 atoms. We als$/nerei = (u,k). The optimal expansion coefficients are
consider both orthogonal and nonorthogonal TB models, and©Ptained by solving the secular equation
we discuss the relationship between orthogonality and many- Hc = €Sc 4
body effects.

The question of orthogonal versus nonorthogonal formula-
tions also arises in semiempirical methods that include a self- Hklk', = EJOZ“:”(PK-D (5)
consistent-field step. For example, AM2and PDDG/PM® o ‘ g
both set the overlap matrix equal to unity in the secular and
equation, whereas SCC-DFTB’and NO-MNDG?®include y KK
the overlap matrix in the secular equation, thereby increasing s‘j;ﬂ, = le,0 6

the cost. Nonorthogonal formulations also complicate the The sum of the orbital energies (the eigenvalues of eq 4)
gradient calculatiod? and they make it more difficult to  \yeighted by the appropriate orbital occupanaiewith ny
achieve linear scaling of computational times for large =0, 1, or 2, wherg labels the eigenvalues and eigenvectors)
Systems, although |inear-sca|ing nonorthogonal formulations is called the valence energy or the band energy, given by
have been presented for both non-self-consi&téhand

charge-self-consistefittight-binding methods. A recefit Eva = anfj (7)
study found that the mean unsigned error for the heat of )

reaction of 34 diverse isomerization reactions is 7.1, 5.0, andEnergy levels are typically filled to minimize eq 7, which is
2.8 kcal/mol (0.31, 0.22, and 0.12 eV) for AM1, SCC-DFTB, called the aufbau principle. However, in some cases, it is
and PDDG/PM3, respectively. Similar results were found useful to minimize a more general electronic energy given
for 622 heats of formation, with the nonorthogonal SCC- by
DFTB intermediate in accuracy between AM1 and PDDG/
PM3* and with NO-MNDO better than MNDO for HCO

compounds but not for HCN compount{sThus, orthogonal whereUpenis a penalty enerdy for pairing electrons. We

formulations may be either less or more accurate than .,qijer several values of the penalty energy (including zero).
nonorthogona! ones, depending on the parametrization. T_heThe use of a penalty energy is operationally equivalent to
present study is designed to test the role of nonorthogonalltyha\,ingl different Hamiltonians for spin-up and spin-down

in tight-binding theory by parametrizing nonorthogonal and gjectrons, where the Hamiltonians differ only in thit.is
orthogonal formulations in the same way using the same gqded to the diagonal for spin-down electrons.
training data. The total energyE is
Section Il briefly introduces the TB models that are E=E. +E. —E 9

. . . . — ~Elec Core DC ( )
considered in this paper. In section lll, the database of
accurate energies is described, and the TB models arewhereEc,.is the core-core repulsion anépc corrects for
parametrized and tested in section IV. Section V discussesthe double counting of the two-electron interactidhsThe
the results, and section VI is a summary. double-counting term and the cereore repulsion are often

H=T+ Ve + VY, 2)

wheree is a diagonal matrix with diagonal elemenis

EEIec= EVal + 6n12UPen (8)
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grouped together and represented by an effective pairwiseentire system (or the local geometry), and we call such
repulsive term formulations many-body tight-binding (MBTB) modéls.
(Some worker¥-23 call them environmental-dependent tight
E=Eeiec T Vrep (10) binding.) Ho and co-workef%3? suggested a many-body
term to model screening. The screening many-body term was
tested previously for WH tight binding for aluminum
clusterst* and it was shown to be more accurate than two
other many body-terms that were also tested. In the present
Vrep= ZA exp(-BRy)/Rg (11) article, we consider three implementations of the screening
K<k (S) many-body function, applied (as discussed elsevifjere
to screening the repulsion (SR), screening the ionization
potentials (SIP), or screening the off-diagonal elements
(SOD). The screening many-body function has three fitting
parameters, and the SIP implementation has two additional
parameters, as discussed elsewhélde many-body terms
also contain a two-parameter cutoff function, as discussed

The pairwise form forVge, has been justified by Foulkes
and Haydock® We use a three-parameter repulsion with the
form

whereR is the distance between atokandk’; A, B, and
C are parameters; and the summation runs over all unique
pairs of atoms.

In semiempirical tight-binding models, several additional
approximations are made to make the above procedure

computationally efficient. First, a minimal basis set is in ref 3. One may call a model that retains overlap and adds

employed (specifically, for Al, one 3s and three 3p orbitals many-body terms “nonorthogonal many-body tight-binding”
per atom). Next, the matrix elementd. are taken as (NMBTB).

empirical parameters or simple functions of empirical
parameters. In this article, we consider the Wimhodel
where

Finally, one may also choose to neglect the overlap when
solving eq 4, and we denote these models as TB and many-
body tight binding; one could also say orthogonal tight-

Hlqul — _5WU; (12) binding anq ort.hogone}I many—bpdy tight-binding, but the
: : usual notation in the literature is to assume orthogonality
U,k is the valence state ionization potential for an electron when “nonorthogonal” is not specified. There has been
work34 showing that the effect of including overlap (as in
NTB) is similar to including a many-body term in the off-
diagonal matrix elements of a TB model. This leads to the
) ] o ] B interpretation that NTB is more accurate than TB because it
in a_ltom|c orbitali on a_tor_nk, andKis an emp|r_|cal parameter, effectively goes beyond the pairwise approximation. How-
which Hoffmann optimizetito 1.75 but which we take to  gyer hoth TB and NTB involve a diagonalization step, and
be a fitting parameter. We consider two other models for {herefore, both schemes include many-body effects. Further-
the off-diagonal elements: a parameter-free model derived more, if one chooses to view eq 10 as a fitting scheme, then

Kk KK
H

Hipe = K= =5 (k= k) (13)

by Cusachs and Cusach¢CC) Vrep NOt 0nly includes the double-counting correction and
Kk 4 ki the core-core repulsion, but it also empirically corrects for
HKK = (2 — | 9% )4 g (14) all of the other approximations made when applying TB to
" " 2 " real systems. As a result, although it is true that the overlap
and a form proposed by Lathiotakis e€afor metals, which matrix is very different from the unit matrix at chemical
we denote LAMC. atom—atom separations, in light of the many other significant

In the present study, the valence state ionization potentials@PProximations in TB and NTB theory, it is not clear how
U!‘ used in eq 12 are fixed at the atomic experimetal important !t is to include overlap in the secular equation.
values (10.62 and 5.986 eV for the 3s and 3p orbitals, 1 "€ question of whether one achieves a bet@anceof
respectively). Then, along with the three parameters in the @PProximations when one retains or neglects overlap is one
repulsion, the WH model has one adjustable paranteter ~ Motivation for the current work.
the CC model has no adjustable parameters, and the LAMC
model has five adjustable parameters for Al. Following Slater Ill. Calculations
and Kostef, the matrix elements were evaluated in a The tight-binding models are tested using the previously
symmetry-adapted local coordinate system when computingpresented pure aluminum nanoparticle datet Sétis data
eq 14. set consists of 808 energies and geometries fQr with N

In all of the above formulationsi, depends only on = 2-177, including 127 data points for particles with
atomsa andf, whereas in a more accurate calculation, the diameters greater than 1 nm. Symmetric structures such as
one-electron contributions also involve three-center terms, icosahedral, face-centered cubic (FCC), hexagonal close-
and the two-electron contributions involve three- and four- packed, body-centered cubic, and simple cubic are included
center terms. Slater and Kosteuggested the two-center for several atomic volumes. Nonsymmetric structures are
simplification, and it is widely used. The models discussed represented as well, including disordered structures and
above are usually called nonorthogonal tight-binding (NTB) structures with over- and undercoordinated interior atoms,
to emphasize the retention of the overlap ma8ix that is, atoms with coordination numbers greater than and

One may choose to go beyond pairwise tight binding by less than the bulk value of 12. The data set is divided into
writing HZ/'j or Vgep @s a function of the geometry of the 11 groups containing particles with sizbs= 2, 3, 4, 7,
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Table 1. Mean Unsigned Errors (eV) for Several Table 2. Mean Unsigned Errors (eV) for Several
Tight-Binding (TB) Parameterizations? Nonorthogonal Tight-Binding (NTB) Parametrizations
fitting fitting
method data Upen, €V K €Dim  €Clus  €Nan € method data Upen, €V K €pim  €Clus  €Nan €
WH 2 0 0.38 0.03 0.07 0.06 0.06 WH 2 0 1.85 0.08 0.63 1.20 0.89
2-13 0 0.41 0.03 0.06 0.06 0.06 2-13 0 191 0.27 0.31 0.49 0.40
2—-177 0 0.41 0.03 0.06 0.05 0.05 2—-177 0 199 038 041 0.24 031
2 0.02 0.39 0.02 0.07 0.06 0.06 2 4.54 152 0.01 114 242 1.73
2—-13 0.05 0.41 0.03 0.05 0.06 0.06 2—-13 0.24 191 024 030 044 0.37
2—-177 0.04 0.41 0.03 0.06 0.05 0.05 2—-177 0.20 199 035 041 0.21 0.30
2 3 0.51 0.04 042 0.76 0.57 WH+SIP 2—-13 0 1.94 0.15 0.20 0.40 0.30
2—13 3 0.42 0.10 0.10 0.09 0.09 WH+SR 2—-13 0 1.89 024 031 044 0.37
2-177 3 044 0.11 0.11 0.05 0.08 WH+SOD 2-13 0 1.86 0.14 0.25 0.23 0.23
WH+SIP 2—-13 0 0.40 0.03 0.06 0.06 0.06 WHXR 2 0 161 028 070 121 094
WH+SR 2—-13 0 0.43 0.04 0.05 0.05 0.05 2—-13 0 1.77 034 054 0.70 0.61
WH+SOD 2-13 0 0.41 0.03 0.05 0.06 0.06 2—-177 0 190 049 0.70 0.35 0.49
LAMC 2 0 0.03 1.89 381 277 CcC 2 0 0.13 052 1.10 0.80
2—-13 0 0.09 0.07v 0.12 o0.10 2—-13 0 0.16 049 1.10 0.79
a All errors are averages over all 11 groups of data, even though 2=177 0O 0.18 049 1.08 0.79
the fits to the N = 2 data and the N = 2—13 data use only one or CCXR none 0 0.19 050 1.08 0.79

five, respectively, of the groups for fitting.

9—-13, 14-19, 20-43, 50-55, 56-79, 80-87, and 89-177, Table 3. Mean Unsigned Errors (eV) for Several
and the number of data points in each group is 44, 402, 79,Previously Presented Parameterizations for Pure Aluminum

42,72, 42, 46, 23, 27, 15, and 16, respectively. fitting
Mean unsigned errors per atom for each data group are method (ref)%?  data  Upen, €V K épim  €cus  €Nan €

computed as discussed elsewhers we are interested in - gR (3) 2 001 082 275 1.80
the transferability of the TB parametrizations for different ol (36) bulk 012 012 013 0.12
particle sizes, we further average the errors and report thenp-a (4) 2-177 0.01 0.08 0.03 0.05
mean unsigned erraipim for the dimer data, the average NP-B (4) 2-177 0.09 0.08 0.05 0.06
ecuus Of the mean unsigned errors for the four groups WH (14) 2-13® 007 039 0.03 0.06 0.06 0.06
containing aluminum clusters with sizes between 3 and 13 OWH (14) 2-13 007 ¢ 0.06 0.08 0.07 0.07
atoms, and the averagg.n of the mean unsigned errors for EWH (14) 2-13"  0.07 0.05 0.06 0.09 0.08

the six groups of nanoclusters and nanoparticles containingMBTBS (14) ~ 2-13"  0.07 0.02 0.05 0.08 0.06
between 14 and 177 atoms. The overall mean unsigned erroMBTBCN (14) 2-13°  0.07 0.03 0.07 0.09 0.08

¢ is obtained by averaging all 11 data groups, which is MBTBBA (14) 2-13" 007 ¢ 003 005 006 0.06
equivalent to a Reference number in parentheses. ? A subset of the current data

set for Aly, N = 2—13, was used for these fits. ¢ These models have
— multiple values of K, depending on the local orbital symmetry.
€= (eDim + 4eclus—i_ 66Nar0/11 (15) P P g y y

o O o

the MBTBS, MBTBCN, and MBTBBA are examples of
MBTB, in particular WH models with screening (S) and two
other types (CN and BA) of many-body terrfs.

The available adjustable parameters were optimized by
minimizing €pim, (€pim + 4€cug/5, Or € using a genetic
algorithn® for two values of the penalty enerdype, O or
3 eV. Fits were also obtained by treating the penalty energy

as an optimized fitting parameter. V. Discussion
First, we consider the TB and MBTB results in Table 1. For
IV. Results zero penalty energy and when the penalty energy is optimized

Once the optimal parameters were obtained, the resulting(resulting in values of 0.02 to 0.05 eV), the parametrizations
fits were then tested against the full data set, and the resultsobtained by fittingonly to dimer data give very good overall
are summarized in Tables 1 and 2. For comparison, Table 3errors of 0.06 eV/atom. When parameters are obtained by
contains errors for several fits that have previously appearedfitting to the full data set of 808 geometries, the overall errors
in the literature, including four analytic potential energy do not improve significantly. Furthermore, these errors
functions: ERE a pairwise form fit to the aluminum dimer;  (~0.05 eV/atom) are close to the error for the most accurate
Gol 2% an embedded-atom form fit to bulk data; and NP-A of the orthogonal fits and analytic potential energy functions
and NP-B* the two most accurate analytic potential energy presented previously* (see Table 3). This is perhaps a
functions from ref 2 fit to the same data set that is used here.surprising result considering the long list of approximations
Also shown in Table 3 are six tight-binding fits obtained involved in the simple, four-parameter, orthogonal WH TB
previously* using a subset of the current data set with,Al  model and that the training set involves no information about
N = 2—13, as well as a data set of ionization potentials and many-body effects.

bulk properties. The OWH and EWH models are TB models  Fits obtained with a penalty energy of 3 eV, which is the
that may be considered as extensions of the WH model, andvalue used by Wang and M&khave larger errors than those
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for smaller penalty energies. Furthermore, the transferability and the results are shown in Table 2. We find that the trends
of the resulting fits is not as good as is observed for smaller are similar for NTB with and without repulsion, and that, in
penalty energies; that is, the errors are significantly larger fact, NTB with repulsion has slightly better transferability.

for data not included in the fits when a subset of data is

used as fitting data.

The CC TB model has no parameters in the electronic
part of the calculation, and three CC NTB fits were obtained.

Including many-body terms (as in the SIP, SR, and SOD The CC model without repulsion (CCXR) has no adjustable

models) does not significantly improve the overall error, and
this is likely due to the already excellent performance with
accurate pairwise interactions.

The optimal value of the Wolfsberg-Hemlholtz parameter
K is around 0.4 for the more accurate TB fits, which is very
different from the value of 1.75 used by Hoffmahithe
value of 1.75 was obtained in the context of NTB, where
Hoffmann gave an argumerthatK should be greater than
unity. In the context of orthogonal TB there is no such
restriction, and the present values ©D.4 are therefore
reasonable.

We also tested the LAMC functional form for the TB
model. As shown in Table 1, the dimer LAMC fit does not
show the excellent transferability of the WH model, although
by fitting to data up to Ads, good transferability is obtained
to the regime of larger clusters and nanoparticles.

Next, we consider the NTB models summarized in Table
2. The overall errors for the pairwise NTB fits are in the
range 0.3-1.7 eV/atom. The parametrizations obtained by
fitting to the dimer data perform poorly for larger clusters.
For example, the WH NTB model with zero penalty energy
fits the dimer data with an error of 0.08 eV/atom, which is
only slightly worse than the best TB model in Table 1. But

when this parametrization is used to model clusters and
nanoparticles, the mean unsigned error increases by factor

of 8 and 16, respectively, resulting in qualitatively incorrect
fits.

Many-body terms were incorporated in the nonorthogonal

formalism, and their parameters were fit to the dimer and

cluster data; after which, the resulting fits were tested against
the full data set. Table 2 indicates that the presence of the

many-body terms in the repulsion (WMtBR) does not
significantly improve the nonorthogonal model. Adding terms
in the electronic part of the calculation, however, is more
useful, and the errors for the fldata withN = 2—13

parameters, and its errors are also presented in Table 2. For
the CC model, the repulsion does not significantly improve
the fitting error or the transferability. The overall errors for
the CC methods are larger than those for the best WH NTB
fits.

Comparing the best TB to NTB parametrizations shows
that the TB models are both more accurate and more
transferable than the NTB ones. Several theoretical analyses
of the effect of including the overlap in TB have appeared
in the literature/5:26:38-33.3%-43 many of which focus on the
bulk band structure. We do not attempt another such analysis
here, but we do note that, whenever the effect of including
overlap has been discussed, there is an implicit assumption
or explicit working hypothesis, sometimes based on experi-
ence, that including overlap should make the model more
realistic. This belief also underlies discussions of other forms
of semiempirical molecular orbital theory; for example, the
statement that overlap introduces many-body effects was used
to justify its inclusion in a self-consistent-charge density-
functional tight-binding schemé:” However, we know of
no previous systematic test as extensive as the present one.

Although it would be hard to establish firm guidelines for
the inclusion of overlap, we can illustrate the qualitative

éjifference in the TB and NTB WH dimer, and this is done

in Figures 1 and 2. Figure 1b shows that the electronic
eigenvalues have a qualitatively different shape for NTB and
TB, even for the dimer curve. For the TB modelR= 2.8

A, the 3s and 3p energy bands are split by 1.9 and 1.6 eV,
respectively. For the NTB model, the bands split by 3.5 and
8.6 eV, respectively, and several of the energy levels tend
toward positive numbers at small ateratom separations.
One can explain this qualitative difference as resulting from
terms such as (+ S/'j‘u'.) in the denominator of the NTB
energy expressions, whereas these terms are absent in the

decrease by 24% and 37% for the SOD and SIP models, 1B model. For thg_aluminum dimer, the energy levels that
respectively, compared to the pairwise NTB fits. When the €nd to large positive numbers are not occupied (for zero
NMBTB models are tested for transferability against the Penalty energy), the filled energy levels have similar shapes
larger cluster and nanoparticle data, the SOD model is thefor the TB and NTB models, and both models are able to fit

most accurate. However, even the best NMBTB method the aluminum dimer data with good accuracy.

(WH+SOD) has an error that is%b times greater than that
of the simplest TB method.
Tight binding is sometimes implemented without explicit

Figure 2 shows the energetics for an FCGzAluster as
a function of the distance of all 12 surface atoms from the
central atom for the same two fits as were shown in Figure

repulsion, and theoretical arguments may be given in supportl. The TB total energy is fairly accurate, with the minimum

of this choice’?” (Other workers find it more natural to retain
explicit core repulsiod®) One may wonder if including an
empirical repulsion during the fitting procedure is perhaps
responsible for the lack of transferability of the NTB

occurring very close to the accurate minimum. The NTB
total energy is qualitatively incorrect. Figure 2b shows the
qualitative behavior of the eigenvalues, which is similar to
the behavior of the eigenvalues for the dimer. In the case of

parametrizations. (Note that removing the repulsion cannot Al13, however, some of the repulsive electronic energy levels
make the fitted errors decrease, as the resulting model is lesgor NTB are occupied, leading to an NTB total energy that

flexible. We are simply testing the effect that the repulsion
has on the transferability of the NTB parametrizations.) We
fit three NTB WH models without repulsion (denoted “XR”),

is too high for Aks. It is interesting to note that the electronic
energyEge. for the NTB method is in qualitative agreement
with the accurate total enerdy.
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Figure 1. (a) Repulsive (thin dashed) and electronic (thin

solid) components of the total energy (thick solid) for the
aluminum dimer as a function of the nearest-neighbor distance
R for TB (red) and NTB (blue) models. The accurate (PBEh/
MG3 from ref 4) total energies are shown as black diamonds.
(b) Electronic energy levels ¢; for TB (red) and NTB (blue)
models of the aluminum dimer. Some of the levels are
degenerate. For zero penalty energy, half the levels are filled.
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Figure 2. (a) Repulsive (thin dashed) and electronic (thin
solid) components of the total energy (thick solid) for a face-
centered cubic cluster of Al;3 as a function of the nearest-
neighbor distance R for TB (red) and NTB (blue). The accurate
(PBEh/MG3 from ref 4) total energies are shown as black
diamonds. (b) Electronic energy levels for TB (red) and NTB
(blue) for the aluminum dimer. Some of the levels are
degenerate. For zero penalty energy, half the levels are filled.

To gain further insight, we compare tight binding with 4
DFT. The level of theory is unrestricted PBEh/ME&and

the electronic (band) energy of DFT is defined as 3F
=
@
Eglec = Z En]?’ejy —E (16) Z2b
Y= ]
w

wherey denotes sping/ is the DFT orbital eigenvaluey’ 1}
is the orbital occupancy (0 or 1), arigh sets the zero of
energy. (Note that PBEh was formerly called PBEQ.) We
define the correction term to the electronic energy as

VRest: E- EEIec_ EO

e w ===

1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
17) A.A

) ) Figure 3. Virep/N for TB (red) and NTB (blue) and Vges/ N for
where E is the DFT total energy. The correction term per (plack) for aluminum dimer (solid) and FCC Alys (dashed)

inC|Ude_3 core-core repU|5_i0n and th? doub!e counting s a function of nearest-neighbor distance R. The DFT method
correction for the electronic Coulomb interactions. We set ysed for this figure is PBER/MEC.

Eo such thatVrestis zero forN infinitely separated atoms,
that is,Ey = N(E' — Eged), WwhereE! and Egeé are E and
Eeec for an isolated Al atom, respectively, arid is the

DFT (in particular, PBEh/MEC) calculations onAdnd for
FCC Al (Notes: (i) because MEC denotes the usage of
number of atoms in the system. an effective core potential, there are no core orbitals in a
Figure 3 showd/resifor PBEN/MEC andvge,for TB and PBENh/MEC calculation, and this is equivalent to the 4
NTB, scaled (as explained in the caption) by the reciprocal lowest-energy valence orbitals in an all-electron calculation;
of the numberN of atoms. Near equilibriumVgest IS (ii) in counting to AN, degenerate orbitals are counted a
approximately 3.7 and 2.5 times larger thagq,for TB and number of times equal to their degeneracy, but we still have
NTB, respectively. Some of the structure in the DFTizAl  eight curves at some internuclear distariRdsr Al, because
curve is due to the lowest-energy solution changing its when the triplet is lower than the singlet for, Akle use the
multiplicity as a function of nearest-neighbor separation. triplet solution, which breaks the degeneracy of tharbitals
Figure 4 shows theM lowest orbital energies (averaged in the unrestricted self-consistent-field formalism used here.)
over o and 3 spin for the case with an odd number of Quantitative comparisons between DFT and tight binding
electrons and for distances where the dimer is a triplet) for are not possible because of the different approximations
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R,A = 4-6). The DFT method used for this figure is PBEh/MGS3.
Figure 4. Electronic energy levels for DFT for (a) the Table 4. AE (eV) for the Planar to Nonplanar
aluminum dimer and (b) a face-centered cubic cluster of Al;3 Isomerizations with DFT, TB, and the NP-A and NP-B
as a function of the nearest-neighbor distance R. The DFT Interatomic Potentials
method used for this figure is PBEh/MEC. method fitting data Aly Als Al
i . , oo PBEh/MG3 0.24 0.29 —-1.06
involved in the two theories. For example, for mﬂmtely B 2 0.18 ~0.30 —0.87
separated atoms, the TB and NTB energy levels give (by 2-177 0.05 —0.26 —0.76
construction) the experimental ionization potentials, and the np-a —0.59 -1.18 —2.04
pairwise repulsion (again, by construction) goes to zero. In  Np-B —0.55 —0.89 —~1.89

the DFT calculation, however, the energy levels for separated
atoms include double counting of the Coulomb terms, and
therefore, the correction term to the sum of the occupied potential also predicts Ad to be planar and has a 0.7 eV/
orbital energies is not zero. We have taken account of this atom error for the bulk cohesive energy.
by our choice of the zero of energy in Figure 3, but there is  We have optimized planar and nonplanar structures for
no simple way to correct the individual levels shown in Als, Als, and Ak with the PBEHK* density functional and
Figure 4. Also, the unoccupied orbitals in tight binding have the MG3 basis sét: The PBEh/MG3 structures are shown
a different interpretation than those in DFT. Despite these in Figure 5. In Table 4 we list the PBEh/MG3, TB, NP-A,
differences, we note that the qualitative shapes of the DFT and NP-B values foAE, and we note that a negativeE
energy levels in Figure 4 agree better with the orthogonal means that the nonplanar structure is energetically more
TB energy levels than the NTB energy levels, as shown in favorable than the planar structure. The geometries for the
Figures 1b and 2b, although the DFT energy levels have aTB, NP-A, and NP-B calculations were consistently opti-
greater width (i.e., a larger second moment) than those formized, and the PBEh/MG3 geometries were the starting
the TB method. points for the TB, NP-A, and NP-B geometry optimizations.

A final issue that we will look at is how well TB can The NP-A and NP-B interatomic potentials both predict a
predict the geometries of small Al clusters. The geometries three-dimensional structure for all three cluster sizes, (Al
of small Al, and Ak are planafé48 and Ak is the smallest ~ With N = 4—6). The TB method that was fit to the full Al
cluster to have a nonplanar ground st&t@he ability to ~ database, witlN = 2—177, is qualitatively correct for Al
correctly predict the correct ground-state geometries gf Al and the TB methods are much closer to the PBEh/MG3
and Ak with an analytical interatomic potential has proven values than to the results obtained with the interatomic
to be very challenging. The embedded-atom-type models of potentials. These results are encouraging because the simple
Ercolessi and Adam%*°and Voter and Chéh52predict that TB calculations are about three times more accurate than
Al, and Ak are three-dimensional. We note that both of these the best analytic functions.
interatomic potentials included the dimer in their fitting
strategy. Pettersson et®8lhave developed analytic inter- VI. Conclusions
atomic potentials that correctly predict Adnd Ak to be It is well-known that, in simplified methods, overlap-sensitive
planar, but the interatomic potential is unphysical for larger errors of a similar kind but opposite sign may cancel, and it
clusters. For example, the Pettersson €t ahteratomic is desirable to design approximate methods with this in
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mind5® We have presented several parametrizations for (6) Schraler, K.-P.; Sauer, J. Phys. Chenl996 100, 11043.

various tight-binding models, and we have investigated the  (7) Hoffmann, RJ. Chem. Phy<1963 39, 1397;1964 40, 2047,

effect of including the overlap in the secular equation and 2474, 2480, 2745,

O.f including many—quy_ terms. We found Fhat one qf the (8) Slater, J. C.; Koster, G. Rhys. Re. 1954 94, 1498.

simplest models (pairwise orthogonal TB fit to the dimer) ]

is almost as accurate for the entire data set (consisting of (9) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J.

808 geometries from Alto Al;7) as the most accurate of P.J. Am. Chem. Sod985 107, 3902.

the TB fits (orthogonal TB WH-SR). As a general finding, (10) Dewar, M. J. S.; Holder, A. Drganometallics199Q 9, 508.

the orthogonal TB model is more accurate than the nonor- (11) Bredow, T.; Jug, KTheor. Chem. Ac2005 113, 1.

_thogonal model. Many-boc_iy terms do not improve the ﬁFS (12) Schultz, N. E.; Staszewska, G.; Staszewski, P.; Truhlar, D.

in the _orthogonal fo_rmulatlons, _although they do result in G. J. Phys. Chem. B004 108 4850.

some improvement in the NTB fits when applied to the off-

diagonal Hamiltonian matrix elements. (13) Wolfsberg, M.; Helmholtz, LJ. Chem. Physl952 20, 837.
Although the present tests of model types are extensive (14) Staszewska, G.; Staszewski, P.; Schultz, N. E.; Truhlar, D.

and systematic, and the results are clear-cut, the tests are G- Phys. Re. B: Condens. Matter Mater. Phy2004 71,

restricted to a single element (the only element for which a 45423.

well-validated data set of nanoparticle energies is available), (15) Sattelmeyer, K. W.; Jgrgensen, W. L. Preprint.

and we cannot claim that it will always be more accurate to (1) Eistner, M.; Porezag, D.: Jungnickel, G.; Frauenheim, T.:

neglect overlap in semiempirical molecular orbital theory or Suhai, S.; Seifert, @hys. Re. B: Condens. Matter Mater.

even that it will always be more consistent to neglect it in Phys.1998 58, 7260.

the special case of tight binding. In fact, although there has (17) Elstner, M.; Porezag, D.; Jungnickel, G.: Frauenheim, T.;
been considerable success with orthogonal models, some Suhai, S éeifert, GMater. Res. Soc. Sy'mp. Pr019981 '

workers have found, contrary to the results obtained here, 491, 131.
thadt lncIIinlgg overlap C.an Teduce the numfber of parar:’neters (18) Sattelmeyer, K. W.; Tubert-Brohman, I.; Jorgensen, W. L.
and make the parametrizations more transferg@sfBut the J. Chem. Theory Compu2006 2, 413.

present results serve as a strong warning that one should L _

not assume that removing approximations (like neglect of (19) Menon, M.; Richter, E.; Subbaswamy,
. . . . 1996 104, 5876.

overlap) automatically and consistently improves approxi- _ _

mate theories. Because including overlap in tight-binding (20) Jayanthi, C. S.;Wu, S.Y.; Cocks, J.; Luo, N. S.; Xie, Z. L.;

calculations often considerably complicates them and raises Menon, M.; Yang, GPhys. Re. B: Condens. Matter Mater.

the cosB>5"5%we recommend that researchers check carefully Phys.1998 58, 3799.

how much, if any, improvement is afforded by including (21) Bernstein, NEurophys. Lett2001, 55, 52.

overlap when they select a model for large-scale computa- (22) Sternberg, M.; Galli, G.; Frauenheim, Tomput. Phys.

K.JR Chem. Phys.

tions on nanopatrticles, materials, or heterogeneous catalysis. Commun.1999 118 200.
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